Approximate models for aggregate data when individual-level data sets are very large or unavailable.
نویسندگان
چکیده
In this article, we study a Bayesian hierarchical model for profiling health-care facilities using approximately sufficient statistics for aggregate facility-level data when the patient-level data sets are very large or unavailable. Starting with a desired patient-level model, we give several approximate models and the corresponding summary statistics necessary to implement the approximations. The key idea is to use sufficient statistics from an approximate model fitted by matching up derivatives of the models' log-likelihood functions. This derivative matching approach leads to an approximation that performs better than the commonly used approximation given in the literature. The performance of several approximation approaches is compared using data on 5 quality indicators from 32 Veterans Administration nursing homes.
منابع مشابه
Statistical Harmonization Methods in Individual Participants Data Meta-Analysis are Highly Needed
Meta-analysis can roughly be divided into aggregate data (AD) meta-analysis and individual participant data (IPD) meta-analysis. AD meta-analysis is the traditional form of meta-analysis and fully focuses on pooling effect sizes that are formulated at the study level, i.e. this analysis represents an analysis of analyses [6]. AD meta-analysis typically combines reported summary statistics from ...
متن کاملTesting For Aggregation Bias in a Non-Linear Framework: Some Monte Carlo Results
Researchers modeling the behavior of individual people or firms are often unable to utilize microlevel data because such data are unavailable or unreliable. Faced with this dilemma, researchers often resort to using aggregate-level data. When the individual-level variable of interest is dichotomous, however, the aggregate-level model is subject to a special form of aggregation bias. Kelejian [1...
متن کاملارائه روشی پویا جهت پاسخ به پرسوجوهای پیوسته تجمّعی اقتضایی
Data Streams are infinite, fast, time-stamp data elements which are received explosively. Generally, these elements need to be processed in an online, real-time way. So, algorithms to process data streams and answer queries on these streams are mostly one-pass. The execution of such algorithms has some challenges such as memory limitation, scheduling, and accuracy of answers. They will be more ...
متن کاملAn Application of Linear Model in Small Area Estimationof Orange production in Fars province
Methods for small area estimation have been received great attention in recent years due to growing demand for reliable small area estimation that are needed in development planings, allocation of government funds and marking business decisions. The key question in small area estimation is how to obtain reliable estimations when sample size is small. When only a few observations(or even no o...
متن کاملSpatial Design for Knot Selection in Knot-Based Low-Rank Models
Analysis of large geostatistical data sets, usually, entail the expensive matrix computations. This problem creates challenges in implementing statistical inferences of traditional Bayesian models. In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult. This is a problem for MCMC sampling algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 29 21 شماره
صفحات -
تاریخ انتشار 2010